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Summary 
 

This is Report # 2 in a series of reports on the NASA IV&V Facility Project ”Investigation of 
the Risk to Software Reliability and Maintainability of Requirements Changes”. This report 
covers the trend analysis experiment. In Report # 1, we developed an approach for identifying 
requirements change risk factors as predictors of reliability and maintainability problems. Our 
case example consisted of twenty-four Space Shuttle change requests, nineteen risk factors, and 
the associated failures and software metrics of the Space Shuttle “Three Engine Out” software 
(designated “OIO” in this report). The approach can be generalized to other NASA domains with 
numerical results that would vary according to the application. 
 
 In Report # 1, we identified four Space Shuttle requirements change risk factors that had a 
statistically significant effect on reliability. These were the following: the amount of memory 
space required to implement a requirements change (“space”), the number of requirements issues 
(“issues”), the number of modifications (“mods”), and the size of the change (“sloc”), in that 
priority order. In this report, we address the following three types of trends: 
 
1. Trends of reliability and risk factors: evaluate cumulative failures as a function of cumulative 
risk factors and vice versa. 
 
2. Trend and shape metrics: evaluate product reliability and maintainability and the stability of 
the process that produces the product [SCH99]. 
 
3. Trends in fault correction: evaluate trends in the numbers of corrected and remaining faults 
and trends in fault correction times [SCH012]. 
 
 The purpose of  these evaluations is to provide a comprehensive view of trends in reliability 
risk (i.e., risk of faults and failures induced by changes in requirements) that may be incurred by 
deficiencies in the process (e.g., lack of precision in requirements). With this comprehensive 
analysis in hand, the software manager would have valuable information for deciding whether 
the software is safe to deploy. Although we use examples from the Space Shuttle, the approach is 
general and could be applied to any NASA application.  
 

This report is organized as follows: 1. Introduction, 2. Objectives, 3. Analysis of  Results, 4. 
Conclusions, 5. Technology Transfer, 6. Future Research, References, and Bibliography. 
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1. Introduction 
 
 1.1 Trends of Reliability and Risk Factors  
 

Having identified the leading risk factors in Report # 1, in this report, we use these risk 
factors and their associated failure data to develop actual (i.e., empirical) trend and prediction 
equation plots of reliability versus risk factors and vice versa. We use cumulative risk factors and 
cumulative failures for this purpose. The objective of developing the trend equations and plots is 
to predict reliability as a function of risk factors and vice versa for future Operational Increments 
(OIs) of the Space Shuttle. In addition, we examine the rate of change of these functions in order 
to identify the sensitivity of reliability to changes in requirements change requests. The details of  
applying risk factor reliability predictors are covered in section 3.1. 
 
 1.2 Trend and Shape Metrics    
 
 The trends mentioned in section 1.1 are useful but only address a single release of the 
software (e.g., OIO). To address the interaction between reliability and maintainability with 
process stability across and within releases, trend and shape metrics are used. By chronologically 
ordering metric values by release date, we obtain discrete functions in time that can be analyzed 
for trends across releases. In addition to trends in metrics, the shapes of metric functions provide 
indicators of process stability. We use the trends of these metrics across releases to analyze long-
term process stability. We use the shapes of these metrics within a release to analyze short-term 
process stability. The rationale of these metrics is it is desirable to show reliability growth (i.e., 
trend metrics) and that it is better to reach important points in the growth of reliability sooner 
than later (i.e., shape metrics). If we reach these points late in testing, it is indicative of a process 
that is late in achieving stability. In sections 3.2 and 3.3, we apply trend and shape metrics, 
respectively, to make a comparison of the reliability risk and process stability of release OIO 
with other releases of the same software system. Thus, the software manager is able to identify 
product and process anomalies among releases and to prioritize the allocation of resources to 
product and process improvement according to the results of the comparison.  
  

1.3 Trends in Fault Correction 
 
 In general, software reliability models have focused on modeling and predicting failure 
occurrence and have not given equal priority to modeling the fault correction process. However, 
there is a need for fault correction prediction, because there are important applications that fault 
correction modeling and prediction support. These are the following: predicting whether 
reliability goals have been achieved, developing stopping rules for testing, formulating test 
strategies, and rationally allocating test resources. This trend analysis provides a more accurate 
evaluation of the reliability risk of deploying the software than would be the case if we only 
considered the occurrence of failures. In the latter case, the reliability of the software would be 
under stated because reliability predictions would not account for the removal of faults. The 
details of applying trends in fault correction are covered in section 3.4. 
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2. Objectives 

 
Identify the attributes of requirements that cause the software to be unreliable and quantify 

the relationship between requirements risk and reliability. If these attributes can be identified, 
then policies can be recommended to NASA for recognizing these risks and avoiding or 
mitigating them during development. Extend and validate our work in this area on the Space 
Shuttle [SCH011] to the Goddard Space Flight Center and the Jet Propulsion Laboratory 
software projects.  
 
3. Analysis of Results 
 
 3.1 Trends of Reliability and Risk Factors  
 

We identify thresholds of risk factors (i.e., the attributes of a requirements change that can 
induce reliability risk) for predicting when the number of failures would become excessive (i.e., 
rise rapidly with the risk factor) [SCH011]. 

  
Two of the most important requirements risk factors of the Space Shuttle, as measured by 

their negative effect on software reliability, are space and issues. The former is defined as the 
amount of memory space required to implement the requirement change and the latter is defined 
as the number of possible conflicts among requirements. In [SCH011], it was determined that 
these two risk factors had the highest statistically significant relationship with reliability (i.e., the 
greater the cumulative memory space required to implement changes and the greater the number 
of cumulative conflicting requirements issues caused by the changes, the greater the negative 
effect on reliability). 

 
An example is shown in Figure 1, where cumulative failures are plotted against cumulative 

memory space for both actual and predicted data. The later was formed using non-linear 
regression, where a second-degree polynomial was the best fit. The prediction equation, which is 
shown on the figure, has a residual standard error of 1.53266 on 4 degrees of freedom. The figure 
shows that when memory space reaches 2688 words, actual cumulative failures reach three and 
climb rapidly thereafter. Another example is shown in Figure 2, where cumulative failures are 
plotted against cumulative requirements issues, for both actual and predicted cases. The 
prediction equation, which is shown on the figure, has a residual standard error of 1.07889 on 5 
degrees of freedom. When issues reach 272, actual cumulative failures reach 3 and climb rapidly 
thereafter. In both cases, a cumulative failure count of 3 has been identified as a critical value. 
Although the counts of 2688 words and 272 issues provide estimates of the threshold to use in 
controlling the reliability of the next version of the software, the next version may not exhibit 
bends in the curves at the same value of risk factor. Therefore, the prediction equations and plots 
are an attempt to generalize the relationship between risk factors and reliability, such that they 
can be used to predict cumulative failures for any given value of cumulative risk factor. This 
process would be repeated across versions with the prediction equations being updated as more 
data is gathered. Thresholds would be identified for several risk factors. This would provide 
multiple alerts of low reliability. 
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Additional insight about the relationship between risk factors and reliability can be gained by 
plotting the first derivative of the prediction equations in Figures 1 and 2 (i.e., rate of change). 
These are shown in Figures 3 and 4 for space and issues, respectively. Because the equation in 
Figure 1 is a second-degree polynomial, its derivative in Figure 3 is linear; thus, space has a 
predicted linear growth rate. In contrast, because the equation in Figure 2 is an exponential, its 
derivative is also an exponential and is simply the original function multiplied by a constant. 
This plot is shown in Figure 4. In comparing Figures 3 and 4, the implication is that we should 
have more concern about the negative effect on reliability of issues because of its predicted 
exponential growth rate. 

 
Finally, for the next version of this software, we want to predict the cumulative values of risk 

factors that correspond to given values of cumulative failures, particularly critical values. Figures 
5 and 6, show the plots corresponding to the equations on the figures. These equations and plots 
were obtained by solving the equations of Figures 1 and 2 for cumulative risk factor as a function 
of cumulative failures. For example, if cumulative failures equal to 3 are considered critical, this 
would correspond to 1596 words of memory (Figure 5) and an issue count of 232 (Figure 6). 

 
3.2 Trend Metrics   
 
Although looking for a trend on a graph is useful, it is not a precise way of measuring and 

comparing trends, particularly if the graph has peaks and valleys and the measurements are made 
at discrete points in time. In analyzing the relationship between product reliability and process 
stability, we solved this problem by developing a generalized relative Change Metric (CM) that 
represents trend information (e.g., changes in reliability across releases) in a single metric 
[SCH98]. CM is independent of the scales of the measured quantities. We will use this metric to 
measure changes in reliability across releases of the software and compare them to see whether 
trends are favorable, indicating reliability growth and process stability, or unfavorable, indicating 
lack of reliability growth and process instability. The following is an example of computing CM 
for the reliability metric failures/KLOC: 

 
1. Note the change in a metric from one release to the next (i.e., release j to release j+1). 
 
2.a. If the change is in the desirable direction (e.g., Failures/KLOC decrease), treat the 

change in 1 as positive. 
     
   b. If the change is in the undesirable direction (e.g., Failures/KLOC increase), treat the 

change in 1 as negative. 
 
3. a. If  the change in 1 is an increase, divide it by the value of the metric in release j+1. 
    b. If the change in 1 is a decrease, divide it by the value of the metric in release j. 
 
4. Compute the average of the values obtained in 3, taking into account sign. This is the 

change metric (CM). The CM is a quantity in the range –1, 1. A positive value indicates a 
favorable trend; a negative value indicates an unfavorable trend. The numeric value of CM 
indicates the degree of stability or instability. The standard deviation of these values can also be 
computed. The average of the CM for a set of metrics can be computed to obtain an overall 
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change metric. An example of calculating CM for Mean Time to Failure (MTTF) and 
Failures/KLOC is shown in Table 1 for various Operational Increments (i.e., releases) of Space 
Shuttle software. Figures 7 and 8 show the corresponding plots of Mean Time to Failure and 
Failures/KLOC, respectively, across the releases. The results suggest slight process instability for 
MTTF and slight stability for Failures\KLOC. Overall, we would not conclude that the process in 
unstable. 

 
We note in Figure 7 that OIO – the operational increment analyzed for reliability risk in 

section 3.1 -- has a relatively low MTTF (unfavorable) and in Figure 8 a relatively low 
Failures/KLOC (favorable). In addition, in Table 1, the relative changes from OIJ to OIO are 
negative – unfavorable. Overall, these results suggest that OIO is a candidate for additional 
inspections and testing, in particular to increase its MTTF. 

 
Table 1: Example Computations of Change Metric (CM) 

Operational 
Increment 

MTTF 
(Days) 

Relative 
Change 

Failures/KLOC Relative 
Change 

A 179.7  0.750  
B 409.6 0.562 0.877 -0.145 
C 406.0 -0.007 1.695 -0.483 
D 192.3 -0.527 0.984 0.419 
E 374.6 0.487 0.568 0.423 
J 73.6 -0.805 0.238 0.581 
O 68.8 -0.068 0.330 -0.272 
 CM -0.060 CM 0.087 

 
3.3 Shape Metrics  
 
In addition to trends in metrics, the shapes of metric functions provide indicators of 

maintenance stability. We use shape metrics to analyze the stability of an individual release and 
the trend of these metrics across releases to analyze long-term stability. The rationale of these 
metrics is that it is better to reach important points in the growth of product reliability sooner 
than later. If we reach these points late in testing, it is indicative of a process that is late in 
achieving stability. We use the following types of shape metrics: 

 
1. Direction and magnitude of the slope of a metric function (e.g., failure rate decreases 

asymptotically with test time). Using failure rate as an example within a release, it is desirable 
that it rapidly decrease towards zero with increasing test time and that it have small values. 

 
2. Percent of test time at which a metric function changes from unstable (e.g., increasing 

failure rate) to stable (e.g., decreasing failure rate) and remains stable. Across releases, it is 
desirable that the test time at which a metric function becomes stable gets progressively smaller.  

 
3. Percent of test time at which a metric function increases at a maximum rate in a favorable 

direction (e.g., failure rate has maximum negative rate of change). Using failure rate as an 
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example, it is desirable for it to achieve maximum rate of decrease  as soon as possible, as a 
function of test time. 

 
4. Test time at which a metric function reaches its maximum value (e.g., test time at which 

failure rate reaches its maximum value). Using failure rate as an example, it is desirable for it to 
reach its maximum value (i.e., transition from unstable to stable) as soon as possible, as a 
function of test time. 

 
5. Risk: Probability of not meeting reliability and safety goals (e.g., time to next failure 

should exceed mission duration), using various shape metrics as indicators of risk. Risk would be 
low if the conditions in 1-4 above obtain. 

 
3.3.1 Failure Rate 

 
We now apply the principles of section 3.3. to the failure rate function of OIO. In the short-

term (i.e., within a release), we want the Failure Rate (1/MTTF) of an OI to decrease over an OI's 
Test Time, indicating increasing reliability. Practically, we would look for a decreasing trend, 
after an initial period of instability (i.e., increasing rate as personnel learn how to maintain new 
software). In addition, we use various shape metrics, as defined previously, to see how quickly 
we can achieve reliability growth with respect to test time expended. Furthermore, Failure Rate 
is an indicator of the risk involved in using the maintained software (i.e., an increasing failure 
rate indicates an increasing probability of failure with increasing use of the software). 

 
Failure Rate = Cumulative Number of Failures During Test/ Cumulative Test Time (1). 
 
We plot Equation (1) for OIO, using actual failure data, in Figure 9 against Test Time since 

the release of OIO. Figure 9 does show that short-term stability is achieved (i.e., failure rate 
asymptotically approaches zero with increasing Test Time). In addition, this curve shows when 
the failure rate transitions from unstable (positive Failure Rate) to stable (negative Failure Rate). 
The figure also shows how risk is reduced with decreasing Failure Rate as the maintenance 
process stabilizes. We use this plot to assess whether we have achieved short-term stability in the 
maintenance process (i.e., whether Failure Rate decreases asymptotically with increasing Test 
Time). If we obtain contrary results, this would be an alert to investigate whether this is caused 
by: 1) greater functionality and complexity of the OI as it is being maintained, 2) a maintenance 
process that needs to be improved, or 3) a combination of these causes. 

 
We use equation (2) [ANS93, SCH99] to compute the predicted Failure Rate, where i is a 

vector of time intervals for i � s-1, and s is the starting time interval for using failures counts for 
computing parameters � and �, in equation (2) [SCH93].  

 
f(i) = �(EXP(-�(i-s+1)))                                                    (2). 
 
A 30-day interval has been found to be convenient as a unit of Space Shuttle test time 

because testing can last for many months or even years. Thus, this is the unit used in Figure 9, 
where we apply the Shape Metrics described in section 3.3 and show the following events in 
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intervals, where the predictions were made at 12.0 intervals and Total Test Time is 37.0 intervals 
from the release of the OI by the contractor to NASA: 

 
Release time: 0 interval 
 
Launch time: 13.27 intervals 
 
Predicted time of maximum Failure Rate: 6.0 intervals 
 
Actual time of maximum Failure Rate: 12.0 intervals 
 
Predicted Maximum Failure Rate: .4215 failures per interval 
 This occurs at 16.22 % of  Total Test Time (6.0 intervals) 
 
Actual Maximum Failure Rate: .4167 failures per interval 
 This occurs at 32.43 % of  Total Test Time (25.0 intervals) 
 
Predicted maximum rate of change of Failure Rate: -.0060 failures per interval per interval 
 This occurs at 16.22 % of  Total Test Time (6.0 intervals) 
 
Actual maximum rate of  change of Failure Rate: -.0136 failures per interval per interval 

This occurs at 67.57 % of  Total Test Time (37.0 intervals) 
 
In Figure 9, stability is achieved after the maximum failure rate occurs. This is at i = s -1 (i.e. 

i = 6 intervals) for predictions because equation (2) assumes a monotonically decreasing failure 
rate, whereas the actual failure rate increases, reaches a maximum at 12.0 intervals, and then 
decreases. Once stability is achieved, risk decreases. We also note in Figure 9 that the maximum 
rate of change of the actual Failure Rate occurs at 25.0 intervals. This is a key point in achieving 
reliability growth of the product and maturity of the process because at this time reliability is 
improving at the maximum rate. Of course, the Space Shuttle would not be launched until 
stability has been achieved, as shown in Figure 9. 

 
Although launch took place at 13.27 intervals, the above predictions and actual data represent 

a retrospective analysis of events. The discrepancy between predicted and actual results is 
accounted for by the fact that whereas the actual data were produced by accounting for events 
over the Total Test Time of 37.0 intervals, predictions were made after only 12.0 test intervals 
had elapsed. In practice, the actual Failure Rate curve would be plotted as failures occur in order 
to determine when stability has been reached (i.e., Failure Rate turns from increasing to 
decreasing). In addition, predictions of failure rate would be made for the important reason that 
at any time in testing, future failure events would be unknown. 
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3.4 Trends in Fault Correction 
 
The final analysis involves trends in fault correction counts and corrections times, along with 

stopping rules that are based on modeling and predicting the fault correction process. We 
continue the analysis of OIO -- the Space Shuttle OI that was at risk in the early phases of its 
development  -- as the analysis in sections 3.1, 3.2, and 3.3 indicated. 

 
3.4.1 Remaining Faults 

 
The predicted number of remaining faults, after the correction process has been operative for 

time T, is given by equation (3): 
 
N (T) = D (T) – C (T)                  (3), 

 
where D (T) is the number of failures detected and C (T) is the number of faults corrected by 
time T. 

This equation is based on the assumption that all the faults that exist in the software have 
been predicted by D (T) [SCH012]. A more conservative prediction is obtained by predicting the 
detected failures over the life of the software D (TL), as in equation (4) [SCH97], and then using 
equation (5) as the predicted remaining faults. 

 
D (TL) = �/� + Xs-1                   (4), 
 
where Xs-1 is the observed failure count in the range 1, s-1. 
 
N (TL) = D (TL) – C (T)                  (5). 

 
The number of remaining faults N (T), equation (3), plotted as a function of test time, as 

illustrated in Figure 10 for Shuttle OIJ and OIO, can be used as a stopping rule for testing. We 
used an upper probability limit of .90, meaning that the probability is .90 that N (T) is less than 
or equal to its ordinate values for a given test time, or .10 that these values are exceeded. The 
practical significance of this plot is that it is highly unlikely that reliability could be improved by 
testing for more than 30 intervals. This figure is interesting because it shows a cross over 
between the OIs at T = 11.5. This would imply that OIJ should be given higher priority before T 
= 11.5 and lower priority after it. By priority, we mean the order of testing and allocation of 
personnel and computer resources. We consider N (T) useful because it can be used with the 
critical value of remaining faults Rc -- a reliability threshold.  For example, for Rc = 1 in Figure 
10,  testing would be terminated for OIJ at T = 13.5 and for OIO at T = 26. 

 
3.4.2 Reliability Improvement 

 
In the previous section, we used absolute quantities (e.g., number of remaining faults) for 

developing test strategies and assessing reliability. In this section, we use the relative quantity p 
(T), the proportion of faults remaining at time T, which is related to r (T), the proportion of faults 
corrected at time T, by equation (6):  
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p (T) = 1 – r (T) = 1 - C (T)/D (T)              (6). 
  
A plot of equation (6) is shown in Figure 11 for OIJ and OIO. We do this because two 

software systems could have experienced different numbers of failures but have equal numbers 
of remaining faults. In this case, the software with fewer failures would have achieved greater 
progress in reliability improvement, as measured by p (T). However, the use of a threshold seems 
more intuitive when applied to N (T). In practice, both measures could be used.    

 
3.4.3 Test Scheduling 

 
 We can anticipate test requirements and do proactive test scheduling by using the predicted 
amount of test time required to correct a given number of faults [SCH012] . In addition, a plot of 
multiple software systems shows how the systems compare in test requirements. An example is 
shown in Figure 12 for OID and OIO, where the predictions are for the case of zero faults 
corrected at the time of prediction, and a .90 upper probability limit. Because the values for OIJ 
are virtually identical to those for OID, the former is not plotted. We see that the difference in 
test time between the OIs increases with increasing number of faults. This result implies that 
relatively large quantities of resources -- personnel and computer time --  would be required to 
correct the faults in OIO, and that this need accelerates as the number of faults to correct 
increases.  
 

3.4.4 Validation 
 
 An example of a validation, using the test – failure – fault correction scenario for OIO is 
shown in Table 2. This involved determining from the collected data when failures occurred and 
when faults were corrected. The actual delay between failure occurrence and fault correction was 
estimated by examining, manually, the Shuttle Discrepancy Reports (i.e., reports that document 
deviations between specified and observed software behavior) to determine the disposition of the 
fault (i.e., the release and release date on which the fault was corrected). This was a laborious 
process because although failures are recorded in electronic files, there is no electronic file of 
fault corrections with correction dates. We had to infer the correction dates from the release 
dates.  
 

Either the event column of Table 2 shows when a failure occurred or a fault was corrected. In 
some cases multiple failures or corrected faults occurred in the same interval; these occurrences 
are signified by the plural form in the event column. The next column shows the test time T 
when the events occurred followed by the actual values of cumulative number of failures 
detected D (T), cumulative number of faults corrected C (T), and number of remaining faults N 
(T), the difference between D (T) and C (T). The next section shows the predictions for D (T), C 
(T), and N (T). Notice at the top of Table 2 the statement about the range of prediction, which is 
T > s-1. For OIO, s = 9; therefore, the predictions start at interval T = 9.07 

 
The last section of Table 2 shows the squares of the differences between actual and predicted 

values for computing the Mean Square Error (MSE) at the bottom of the table. We computed 
MSE rather than Mean Relative Error because the latter would have required division by zero in 
those cases where C (T) = 0. We consider the MSE values for OIO to be sufficiently low to 
validate the predictions.  
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Table 2: OIO (Predictions for T > s-1 = 8) 

  Actual Values Predictions Squared Error 
Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T) 

Failure 5.77 1 0 1       
Failure 5.90 2 0 2       
Failure 7.53 3 0 3       
Correction 9.07 3 1 2 3.20 1.06 2.14 0.04 0.00 0.02 
Failures 11.47 5 1 4 3.62 1.49 2.13 1.90 0.24 3.50 
Corrections 16.80 5 4 1 4.49 3.37 1.11 0.26 0.39 0.01 
Failure 24.67 6 4 2 5.60 4.50 1.10 0.16 0.25 0.82 
Corrections 29.40 6 6 0 6.18 6.09 0.09 0.03 0.01 0.01 
Failure 36.17 7 6 1 6.92 6.84 0.08 0.01 0.71 0.86 
Correction 45.77 7 7 0 7.79 7.73 0.06 0.63 0.54 0.00 
    Mean Square Error 0.43 0.31 0.75 
 
4. Conclusions 
 
 Based on the results of the retrospective analysis that has been presented, using OIO as an 
example, we conclude that it is feasible to perform a variety of trend analysis that can be used for 
the following purposes: 
 
a. Having identified the statistically significant risk factors, as was demonstrated with  
discriminant analysis in Report 1 for OIO, we used these risk factors as predictors of reliability. 
We developed prediction equations and identified thresholds of cumulative risk factors and 
cumulative failures that would allow these quantities to be predicted as a function of the other 
quantity. When the predictions exceed the thresholds or critical values, they serve as alerts to 
software management to give priority attention to the software releases that appear to be at risk. 
 
b. We applied trend metrics across releases to compare OIO’s reliability and maintainability with 
other OIs of the Space Shuttle; in addition, this analysis provided an assessment of the long-term 
stability of the process that produced these OIs. We applied shape metrics to OIO to analyze its 
empirical and predicted failure rates and the short-term stability of the process that produced it. 
With these results in hand, the software manager is able to identify product and process 
anomalies among releases and to prioritize the allocation of resources to product and process 
improvement according to the results of the comparison. 
 
c. Finally, understanding that the software reliability predictions are limited in accuracy when the 
effect of fault correction is not considered, we included trends in fault correction counts and fault 
correction times. This trend analysis provided a more accurate evaluation of the reliability risk of 
deploying OIO than would be the case if we had only considered the occurrence of failures. In 
the latter case, the reliability of OIO would be under stated because  reliability predictions would 
not account for the removal of faults. We performed a validation on OIO with respect to 
predicted failure detection, fault correction, and remaining faults, and obtained good 
correspondence with the actual values.  
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5. Technology Transfer 
 
 To transfer this technology to the NASA Centers, a possible recommendation is that any 
requirements change to mission critical software -- either new requirements or changes to 
existing requirements -- would be subjected to a quantitative risk analysis. The payoff to these 
organizations would be to reduce the risk of mission critical software not meeting its reliability 
goals during operation. In addition to stating that a risk analysis would be performed, the policy  
would specify the risk factors to be analyzed (e.g., number of modifications of a requirement or 
mod level) and their threshold or critical values. Once high-risk areas of the software have 
identified, they would be subjected to detailed tracking throughout the development process. For 
example, on the Space Shuttle, rigorous inspections of requirements, design documentation, and 
code have contributed more to achieving high reliability than any other process factor. Thus, it 
would be prudent to consider adapting this process technology to other NASA projects because 
the potential payoff in increased reliability would be significant. The objective of these policy 
changes is to prevent the propagation of high-risk requirements through the various phases of 
software development. 
 

Our research results can be generalized to any mission critical system. The Space Shuttle 
data was used because it was available. The risk factors that were used are applicable to any 
NASA software project. The benefits to other programs of applying the research results would be 
significant because these programs would be able to determine at an early stage whether 
proposed requirements changes, either new or changed requirements, are likely to put their 
systems at risk in terms of unacceptable reliability. 
   
6. Future Research 
 
 Future research will involve applying the methodology to another OI of the Space Shuttle 
and identifying the statistically significant risk factors and thresholds to see whether they match 
the ones identified in this research. If this were the case, the other part of the methodology – 
trends analysis – would be applied to this later OI to see whether the analysis would be 
applicable to this software. 
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Figure 1: Failures vs. Memory Space
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Figure 2: Failures vs. Issues
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Figure 3. Rate of Change of Failures with Memory Space
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Figure 4. Rate of Change of Failures with Issues
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Figure 5. Memory Space vs. Failures 
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Figure 6. Issues versus Failures
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Figure 8. Total Failures per KLOC Across Releases 
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Figure 10. Predicted Number of Remaining Faults
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Figure 11.  Predicted Proportion of Remaining Faults
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Figure 12.  Predicted Time to Correct Faults
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